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Local anisotropic effects on multifractality of turbulence

A. Bershadskii and A. Tsinober
Department of Fluid Mechanics and Heat Transfer, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
(Received 11 February 1993)

We study the differences in multifractal properties of rate of dissipation and related fields such as
du?/dt, (3u /3t)?, and (du /dx)* as well as enstrophy and enstrophy generation. It is argued that these
differences can result from local anisotropy of the flow properties in subregions with high values of cor-
responding fields. Local ‘“cascades” of such quantities as helicity and inviscid helicity generation are
considered in this connection. A number of results from laboratory experiments and field observations
are analyzed in the context of the above differences and related problems.

PACS number(s): 47.27.—i

1. MOTIVATION

The rate of energy dissipation in flows of a Newtonian
fluid is given by the following expression:

e=2vs;S;; » (1)

where
s;;=5(0u; /3x;+3u; /3x;) ,

and is a spatially distributed and time-dependent stochas-
tic field. It is related to other flow fields by simple rela-
tions in the mean

<s>=<

under rather general conditions. Here, @=curlu is the
field of vorticity. In locally isotropic turbulence there ex-
ists an additional relation

du, 2
> : 3)

where x is some fixed axis (usually in the direction of the
mean flow).

It is also widely accepted to use the Taylor hypothesis
for interpretation of experimental data so that, in addi-
tion to (1)—(3), one has the relation

2

ou,

- ] ). @
where U is the (local) mean velocity.

Of course, it does not follow from (2)—(4) that other
properties of these fields should be the same or even simi-
lar [1-5]. In this paper we study the differences in mul-
tifractal properties of the above-mentioned fields and

their relation to cascade processes (i.e., dynamical scale
splitting) of a different nature.

du?

dt

>=2v<w2) @)

(e)=15v<

(s)=15U"2v<

II. KOLMOGOROYV TURBULENCE

Hypotheses of Kolmogorov type allow one to obtain
scaling laws in the inertial range from dimensional argu-
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ments. However, these arguments are, generally speak-
ing, inapplicable for determining the generalized dimen-
sions D, in the case when one is interested in multifractal
properties of some field in turbulent flow Y (see, for exam-
ple, [5]). The generalized dimension D, of the field y is
introduced in the following way:

-l [,-3 9_ 7k
G=N"'3 [ f, xdv ]~ Q

p,=(3—D,)g—1), 6)

where v;(r) are volumes of scale r covering the flow re-
gion and N is the number of such volumes. The represen-
tation (5) is a scaling hypothesis for some range of scales.
In the case Dq:#const, it is questionable whether dimen-
sional arguments can be used for finding D, (or u,). This
problem is closely related to the hypothesis on scaling
behavior of quantities like [5]

[ xdv~re. ()

v(r)

The exponent a in (7), generally, is a statistical vari-
able, i.e., it is not a fixed quantity, and therefore cannot
be found from dimensional arguments. However, if there
exists a limit

lim Dq =D, ,

g—

it is easy to show that [6]

mlgx ‘fu'(r)xdv ]~rD°° . (8)

Since D, is a constant, dimensional arguments may be
applicable for its determination.

In Kolmogorov turbulence the only governing dimen-
sional parameter in the inertial range is (e). Applying
dimensional arguments to (8) and the field y =8u?2/dt, it
is straightforward to obtain that D, =3, i.e., this field is
monofractal (g =0). The same arguments for the field
x=(3u /3t)* give D , =1, and for the other three fields
(Bu /9x )?, normalized dissipation iS5 and enstrophy ®?,
the value D , =32. It is noteworthy that the value D , =3
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FIG. 1. Intermittency exponent u, for the field (du /3¢)* in
the atmospheric surface layer [11] and turbulent grid flow [2].

for the field y=0u2/dt has been obtained from different
arguments in [7]; the value D, =1 is discussed in [6],
while the value D, =3 for the fields s;;s;; and ®? can be
related to the results of [8—10].

Experimentally, the asymptotic behavior of D, for
large g (i.e., D) can be found by means of the following
relation:

u,~(3—D,)q . 9

Experimental results on u, shown in Fig. 1 for the field
(du /3t )? correspond to experiments in the atmospheric
surface layer [11] (Re; ~10% and laboratory turbulent
grid flow [2] (Re,~70). It is seen quite clearly that in
spite of a large difference in Reynolds number, the results
of both experiments are very close and exhibit a fast ap-
proach to the asymptotic behavior (9) starting from g =2
with D =1, in full agreement with the value obtained
above for Kolmogorov turbulence (see also [6]). Howev-
er, this is quite surprising in view of the following three
circumstances: (i) It is unlikely that turbulent grid flow at
such low Reynolds numbers will possess the properties of
Kolmogorov turbulence, (ii) it is generally accepted that
in such experiments (du /9x)? is measured (the Taylor
hypothesis) but (du /dt)?, for which D, is different for
Kolmogorov turbulence, and (iii) the fast approach of the
experimental data of the asymptotics (9) is an indication
of strong spatial localization of the field (3u /3dx)2. For
these reasons it is unlikely that we are dealing here with
the properties of Kolmogorov turbulence.

III. LOCAL “CASCADE” OF HELICITY

There is a substantial amount of evidence from labora-
tory and numerical experiments that in turbulent flows
there exist regions of concentrated vorticity, which most
probably take the form of thin vortex tubes—filaments
[12-17,21,26,29]. Theoretical considerations also indi-
cate clearly that such regions of concentrated vorticity
should exist in turbulent flows (see, for example [18,19]) .

Inconsistencies have been revealed also within the mul-
tifractal ideology (which is based on the Kolmogorov cas-
cade) and it has been suggested [20] that these incon-

sistencies can be resolved by an assumption of the tenden-
cy of turbulent flows towards a local two-dimensional
state in some sense in small scales (see [21,22] and refer-
ences therein). Also, the three circumstances mentioned
in Sec. II seem to be related to this tendency. Indeed, for
example, in [23] a possibility of a helicity cascade is inves-
tigated as an alternative to the cascade of energy in
three-dimensional turbulence. The possibility of a helici-
ty cascade is rooted in the fact that helicity (along with
kinetic energy) is an inviscid invariant of fluid motion
(see, for example [24]):

d# _ _ .
dt —fsw,,Q,,ds vaw curlodv , (10)
where
ﬂ=thdu, h=we, Q=lu*-p/p, (11)

S is the surface bounding some volume V, p is the pres-
sure, p is the fluid density, and the fluid is assumed in-
compressible.

A similar relation is valid for kinetic energy,

d[fVuZdv]/dt=—¢spu"ds-—fysdv . (12)

The main ingredient of the cascade ideology is the as-
sumption that in the limit v—0,

0<lim [f 5dv]<oo. (13)
v—0 | 4
In order to apply this ideology to helicity, the surface
integral in (10) is, generally, supposed to be vanishing, as-
suming that

0<lim [v’f m-curlwdv‘ ]< o . (14)
v—0 V

It is important that in the case of helicity (in contradis-
tinction to the case of energy; see below), there exists a
possibility of an ‘““inviscid” cascade. This is due to the
surface integral in (10) containing w,. Indeed, let us
write down (10) for a vortex tube neglecting viscosity and
taking into account that w, =0 at the lateral surface of
the vortex tube

dFH _
"o =P en0 ds+§szw,,Q ds , (15)

where S| and S, are the surfaces of the vortex-tube cross
sections. Suppose that statistically the dynamics of vor-
tex tubes (which is predominantly stretching) is such that
S1,8,—0 and there exists a finite limit

O<S‘,1;r211"0 [ ’¢S1Q"Q ds+ ﬁsza)"Q ds' ] <o . (16)

This means that there exists an inviscid cascade of heli-
city on the set of vortex tubes (filaments). The meaning
of the condition (16) consists of three important aspects.
First, it means that in the limit vortex tubes turn into
vortex filaments of finite intensity, i.e., o, in the vortex-
tube cross sections becomes a § function of the area of
the cross section. The second aspect is that the limiting
“length” of vortex tubes remains finite and smaller than
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FIG. 2. Intermittency exponent yu, for enstrophy o’ in tur-
bulent grid flow [2] (@) and at the axis of a turbulent jet [25]
(X).

the integral (correlation) scale of turbulent flow, since
otherwise the limit in (16) would vanish (in the mean).
Finally, the third aspect is that the relation (16) means
that in the process of the stretching of vortex tubes, the
surface integral in (10) does not vanish when the volume
V —0, while the surface integral in (12) is vanishing when
V —0.

The environment of vortex tubes, which is predom-
inantly stretching them, plays the role of source (sink) of
helicity and maintains the cascade, i.e., the dynamic split-
ting of scales. It is also noteworthy that this cascade is,
roughly speaking, localized on the set of vortex tubes.
Also this cascade is not connected directly with the ac-
tion of viscosity. Therefore, it is plausible that it will
preponderate over the cascade of energy (which is related
directly to the balance of viscous forces) on the set of vor-
tex tubes. Since the inviscid cascade is localized, it will
hardly have any influence on such characteristics as ener-
gy spectra. However, the situation is different in case of
high moments of some quantity Y, which by definition
[see (5)] single out the subregions with high concentration
of x. Therefore, the behavior of high moments of y
should be governed by the dynamics of such subregions.
In particular, if smoothed maxima [see (8)] of such fields

FIG. 3. Intermittency exponent u, of dissipation from a
direct numerical simulation [26].

FIG. 4. Intermittency exponent u, of dissipation in grid flow
[2] and in a jet [25].

as (du /9x )? or w” are located in the proximity of vortex
tubes, it is natural to expect that D , for such fields will
be controlled in the inertial range not by (&) but rather
by the parameter {|dh /dt|). Thus it follows from di-
mensional arguments that

max | [ 2duJ~<

and in a similar way for the fields of enstrophy,

Qu
dx

dn

2/3,1/3
i > r'’°, (17)

dh
20 | (8% |\2/3,7/3
m;'_:lx fvia) dv] < at ) r'’?, (18)
and dissipation,
max [fv s,-jsijdv]~< % )2/3r7/3 . (19)

Thus for all the three fields (du /3x )%, w?, and 5;i8;j» the
dimension D, =7. Hence, the results shown in Fig. 1
can be explained by means of relation (17), which seems
also to remove the three questions posed at the end of
Sec. II. In order to check the representation (18) for the
enstrophy field, we show the relations for u, (Fig. 2) ob-
tained from the same experimental results for grid flow
[2] (as in Fig. 1) and at the center of turbulent circular jet
[25] with Re, =880. In the first case, D, =2.33 and in
the second, D, ==2.39, i.e., both values are in good agree-
ment with the representation (18).

In the case of the field of dissipation, the situation is
more complicated. On the one hand, the results of direct
numerical simulations [26] are in good agreement with
the asymptotic behavior (19), as can be seen from Fig. 3.
On the other hand, the results of experiments used above
[2,25] give for both flows D =2.5 (see Fig. 4), which is
different both from the value given by the relation (19)
and the results of numerical simulations [26]. This seem-
ingly contradictory situation can be resolved via con-
sideration of the instability of the process of filamentation
and a new type of cascade related to it.



48 LOCAL ANISOTROPIC EFFECTS ON MULTIFRACTALITY OF ... 285

IV. LOCAL “CASCADE” OF INVISCID HELICITY
GENERATION

The very fact that in experiments with turbulent grid
flow and turbulent jet [2,25] the values of D, are
different for the fields (Qu /dx )%, ®? and the field of dissi-
pation s;;5;; is an indication of flow anisotropy in subre-
gions with large dissipation. In order to provide a quali-
tative and a quantitative explanation of the contradiction
mentioned at the end of Sec. III, let us introduce a local
representation of the field s;; in a system of reference with
the axis x; coinciding with the axis of the vortex filament
and the following substitution:

p— ~o— a— aNo—1 _
31=523, 57513, 835515, 5,=3(s11755),

1
Ve

&\6’\’(511 +822 +S33):0 .

(51759 —2s533),

In these variables
5
1S = 2 3. (20)
i=1

o

The components 3; form three subgroups realizing
different representations of the axial symmetry group on
disturbances in the form

u~exp{im(¢—ct)}glx,r)

in a cylindrical system of reference with axis x,; along the
axis of the vortex filament. Namely, §5 realizes the repre-
sentation with m =0, the subgroup ¥, and §; with m =1
(single helix), and the subgroup §;, and §, with m =2
(double helix). Disturbances with different m have
different properties. For example, a simple model of sta-
bility of a vortex tube has been given in [27] and it has
been shown that the modes with m =1 are the most
dangerous ones in the case of three-dimensional instabili-
ty (see, also, [28]). It has been suggested that these modes
“might provide the dominant three-dimensional com-
ponents to the splitting process” [27]. In such a case, the
main contribution to s;;s;; in (20) will be made (statistical-
ly) by the components §, and 85 (i.e., s;;3 and s,), while
the components s, 5,,, and 533 will have little influence
(again statistically) on s;;s;; in the regions of vortex-tube
instability. Moreover, in experiments with mean velocity
much larger than turbulence intensity, streamwise vor-
tices are in contact with a stationary probe for a much
longer time than arbitrarily oriented vortex filaments.
Therefore, it is natural to expect the “group preference”
of sy, and 53 in s;;s;; with the axis x; in the streamwise
direction. In other words, (du /dx)? will make a small
contribution to

$;:8;:dv
f,,‘, ij2ij } ’

i.e., this last quantity, and

2
max fv du]

1

max
i

Qu
ox

i

may be separated in space and have essentially different
properties in such experiments.

The right term in the equation for helicity density [24]
[neglecting viscosity; for notations see (10) and (11)],

%};—Zdiv(wQ) , (21)

can be interpreted as an inviscid helicity generation term.
It is plausible that in helical instability on vortex tubes
(filaments) this quantity should play an essential role. It
is easy to show that for a vortex tube,

d . —_ ' ’ . .
- [ J diviwQ)dv ]— $; 0nQds+§ 0, Q'ds+ -+,

(22)
where
,_30 30

ot " 9n

Comparing (22) with (15), one can assume the possibility
of a local cascade of inviscid helicity generation div(oQ)
on vortex tubes in full analogy with the local cascade of
helicity discussed in Sec. III. In the present case the
quantity Q in the condition (16) should be replaced by Q.
In a similar way the environment of vortex tubes plays
the role of a source (sink) of the inviscid helicity genera-
tion and maintains the local cascade. The parameter
governing the scaling processes in such a situation would
be the quantity

<d{div(wQ)} ) ‘ 23)

G= dt

It follows then from dimensional arguments that
max {fvis,-js,-jdv

i.e., in this case the dimension D, =3 for the field s;;s;;.
This is in good agreement with the experimental data for
the grid turbulent flow and for the turbulent jet discussed
above (see Fig. 4).

There are clear indications from direct numerical simu-
lations [29] that the maxima of the enstrophy generation
term

~G1/2r5/2 , (24)

max lfv'ijksjkdv‘
1

are also realized in the regions of instability of the vortex
tubes (filaments). Additional arguments are given below.
In our context this means that D, can be found using as
a governing parameter the inviscid helicity generation G
as defined by (23). In this case the result is as follows:

max
i

fu'a)jcoksjkdv ‘ ~G3/4r9/4 5 (25)

i.e., in this case, D, =3. The value obtained from exper-
imental data for the flow past a grid and jet is D, ~2.19,
i.e., rather close to the value obtained from (25). This is
seen from Fig. 5 in which the intermittency exponents p,
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FIG. 5. Intermittency exponent u, (even g) for the enstrophy
generation term w;®;s;; in grid flow [2] and in a jet [25].

are presented for both flows for the quantity ;s .

The above agreement between the values of D ob-
tained from experiments and from (25) can be interpreted
as an indication that values

max ‘fuiijksjkdvl
1

(on the scales from the inertial range) are located in the

subregions of instability of the vortex tubes (filaments).

Note that D, for the field |(du /dx )?| is equal to 1. This

is different from the value of D, =3 for the field w;® iSij-
The “maximization” of

’ J o, 01 PkSjk ‘

in subregions of dynamical instability is likely due to the
property of such regions to be the source of dynamical ir-
reversibility in turbulent flows. (Note that the scalar
;oS changes its sign when the time is reversed; see
also [30,31].) This can be seen from the following argu-
ments: Let us introduce a (localized) probability density

distribution p(7) via
1 —
<= [ wjopspdv > = [mp(pdn (26)

where < > has the meaning of a local ensemble average
over the regions with largest

S
— | @;w;5;.dv
v Yy jY kS jk

Representing p(7) as a sum of symmetric and antisym-
metric parts

p(m=p (n)+p_(n),
where

p+(M={pn)+p(—n)}/2
and

p—(m={pn)—(—m}/2,
the relation (26) takes the form

1
<[ wjopsudo > = [mp_(mdn . 27

If the motion is statistically reversible in time, then
p—(1)=0 and therefore

1
; < fva)jwksjk > =0.

It is seen from this speculation that subregions with
max; f »,@;0rS; should be looked for among the subre-

gions with “maximal irreversibility”, i.e., subregions with
local dynamical instability in a stochastic flow.
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